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ABSTRACT 

This paper presents the application of a generalized optimality criteria to framed structures. The 
optimality conditions, Lagrangian multipliers, resizing algorithm, and scaling procedures are all represented 
as a function of the objective and constraint functions along with their respective gradients. The optimization 
of two plane frames under multiple loading conditions subject to stress, displacement, generalized stiffness, 
and side constraints is presented. These results are compared to  those found by optimizing the frames using 
a nonlinear mathematical programming technique. 

INTRODUCTION 

Weight optimization of large aerospace structures requires the use of efficient optimization methods due 
to the potentially excessive number of design variables and related constraints. In order for optimization to 
be seriously used by the preliminary designer, the method must be able to handle multidisciplinary problems 
(thousands of design variables and their related constraints) and must be efficient (produce designs in hours 
not days). 

In the late sixties and early seventies the optimality criteria approach to structural optimization was 
developed[l]. At that  time, and in subsequent work, the optimality criterion was derived for an individual 
problem and although very efficient, it was criticized for its lack of generality. Recently, Venkayya(21 has 
generalized the optimality criteria to apply to any structural optimization problem to which the sensitivities 
of the objective and constraint functions can be computed. First, this paper will briefly state the optimality 
conditions. Next, detailed descriptions of the Lagrangian multipliers, scaling formulation along with a 
redesign procedure for stress, displacement, and generalized stiffness constraints applied to plane frames 
will be 'presented. Finally, the optimization results of some plane frames using the generalized optimality 
criterion will be given along with a comparison to results found by nonlinear mathematical programming. 

PROBLEM STATEMENT 

The optimization of a structure for minimum weight can be stated mathematically as: 

Minimize the objective function 

m .._ 

" ( A )  = C p ; l ; A ,  

subject to the constraints 

where " ( A )  is the weight of the structure, p a ,  A,, and 1, are the specific weight, the cross-sectional area, 
and the length of the i th  element respectively. The Z , ( A )  consist of all n of the behavioral constraints and 
Z, is the given allowable for Z , ( A ) .  The summation in equation (1) is over all m elements in the structure. 
However, this does not imply that all the elements are required to participate in the design algorithm. In 
addition to  the constraints Z,, each design variable (A,) has upper bounds (A,'"') and lower bounds (ALL') 
referred to as side constraints. 

- 

DESIGN VARIABLES 

The design variables chosen for the plane frame are A,, I, , ,  and Si,, where A; is the cross-sectional 
area, I,, is the moment of inertia about the z-axis and S,, is the section modulus about the z-axis. These 
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variables are not independent; therefore, A; is chosen as the primary variable with I;, and Si, expressed as 
explicit nonlinear functions of A; in the form 

Depending on the type of cross-section and the assumptions being made n, will vary from 1 to 3 , and u, will 
vary from 1 to 2 .  It is important to note that this method is general and any design variable can be chosen 
such as width of the section, thickness of the flange, or thickness of the web of the section. This section will 
focus on relations between A;, I;, ,  and Si, for solid rectangular cross-sections and a three spar box section. 
Three separate cases will be presented for each type of section. Each case will make varying assumptions 
about the width of the section, depth of the section, thickness of the flange, thickness of the web, and ratios 
of these quantities. 

For the rectangular section in figure 1 having depth d and width b the following cases for the relations 
between A;, I,,, and S;, are presented. 

Case I: Assume b to be constant and d is allowed to vary. 

Case 2:  Assume the ratio b l d  is equal to some constant C, and let b and d vary. 

Case 3:  d is assumed to be constant while b is allowed to vary. 

Next, consider the three spar box section in figure 2. The area A;, moment of inertia I,,, and the section 
modulus can be expressed as: 

or 

or 

Ai = b d ( 2 ( 1 + % ) ; + 3 ( 1 -  tf -)-} t w  
d b  

A; = bdCl  

I ; , = -  l + -  1 + - )  tf 3 - ( l - - ) ( l - - )  2 t w  tf 3 } 
b d 3 ( (  12 d b d 

bd3 
12 2 I;, = -c 

bd2 1 si, = - 6 {(m 

(9) 
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2t w tf 3 
- ( I  - TIP- 4 d ] 

(11) 
bd2 si, = -c 2 c3 6 

Following these definitions the three cases can now be presented. Casel: The t , ,  b, and t , / d  are all held 
constant. 

or 

Ai = bdC1 

Case 3: b allowed to vary with d ,  t, f b ,  and t f /d  held constant. 

A; = bdC1 

(14) 
dCz 

6C1 C3 
Si, = 7;AP' V; = 312 7, = ~ 

These relations for the three spar box can easily be extended to a n spar box cross-section. Also, the I-section 
can be show to be a special case of the spar box with n = 1. 

CONDITIONS OF OPTIMALITY 

The optimization problem defined by equation (1) can be restated in 

P 

L ( A , ? )  = W ( 4 )  - Xj(Zj - Zj) 
j = 1  

p = number of active constraints 

Lagrangian form as 

(15) 

L is the Lagrangian function, and X j  are the Lagrangian multipliers corresponding to the active constraints. 
A constraint will be defined as active if Zj = zj. Minimization of the Lagrangian function with respect to 
the design variable A, gives 

Equation (16) can be rewritten as 

P 

e i j ~ j  = 1 i = 1 , 2  ..., m 
j=1 
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where e,, is the ratio of constraint to objective function sensitivities and is given by 

a Z j / a A ;  
e . .  - 
” - a W / a A ;  

or in matrix form 
e? = g 

where E is an rn x p matrix, 4 is an  p x 1 matrix and is a rn x 1 matrix. 

LAGRANGIAN MULTIPLIERS 

The Lagrangian formulation introduces more unknowns in addition to  the rn design variables. These 
additional unknowns are the Lagrangian multipliers and there are as many Lagrangian multipliers as active 
constraints p. Thus, it  is necessary to solve for rn + p unknowns. This section discusses some methods of 
solution for the Lagrangian multipliers. 

Premultiplying equation (19) by e‘? yields 

where the weight,ing matrix w is an rn x rn positive definite diagonal matrix. Here the diagonal elements of 
the w matrix are taken to be the individual weights of each element (vi, = p;l;A;) . Equation (20) can now 
be stated as 

H X = Z  (21) 

Although the H matrix is non-singular, it is an implicit function of the final design variables. Thus, equation 
(21) represents a non-linear set of equations. Thus, some approximate methods are used instead of trying 
to actually solve for the As by some iterative scheme. The  first approximate method considered consists of 
using the information at the current design and solving the equation (21) for the Lagrangian multipliers by 

inverting the H matrix. - 

4 = H-’Z (22) 

One of the drawbacks of this method is that  there is no guarantee that all the Lagrangian multipliers will 
have the appropriate sign. This causes problems when attempting to resize the design variables. The second 
method considered was originally developed in 1973 by Venkayya and coworkers[3]. This method assumes 
that only one constraint is active at  any one time. For a multi-constraint problem the A’s simply become 
weighting parameters. For a single constraint equation (21) reduces to 

In the case of multiple constraints 

- 
where z, is found to be 

W 

Z 
A = =  - 

W A . =  =- 
1 zj 

m 

Calculating the A’s with this approximate method is computationally very efficient - compared to inverting 
the @ matrix. This is because w,, are the weights of the individual elements and zj is a simple function of 
the given constraint. When finding the As by this approximate method it is always assured that the As will 
have the necessary sign. 
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RESIZING ALGORITHM 

Using the  optimality criterion described in equation (17) an iterative resizing algorithm can be found 
by multiplying equation (17) by Ai and solving for A, 

where q is defined as a step size parameter and r indicates the rth iteration. For most problems q = 2 is 
chosen and gives a good rate of convergence. 

SCALING PROCEDURE 

Once a new design has been generated by the resizing algorithm the constraint surface must be found. 
This is done by the use of a scaling procedure. Let 4 be the current design vector with the new design found 
by 3 = Ab where A is the scale factor. If d A  is the difference between two designs, it can be written as 

If the response of the structure is R, then performing a first order Taylor Series expansion on R about the 
current design point A yields 

Substituting equation (27) for dA,  dividing both sides of the equation by the response R, and realizing that 
R - R = dR yields 
- 

In equation (29) the term EA,] / R  is either 5 0 or > 0 depending on the type of constraint being 
considered. For this work only stress and displacement constraints are being investigated and for these cases 

[ 
EA,] ,/R is always 5 0. Now defining 1.1 as 

equation (29) can be expressed as 

- = (1 - A)p 
dR 
R 

Solving equation (31)  for the inverse of the scale factor A and defining b = gives 
P R  

1 
6 ~ 1  - 1 

A 1 - 6  

By performing a binomial expansion and ignoring higher order terms equation (32) becomes 

1 
- = 1 + b  
A (33) 

Rearranging equation (33), adding 1 to both sides, and defining p as the target response ratio equation (33) 
becomes 

p = - -- p t 1 (34) 
P 
A 
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where B is 
I -  

New Response - R + dR 
Initial Response 

-- 
R B =  

Finally, solving equation (34) for the scale factor gives 

P A =  
P + P - 1  

(35) 

In the case of truss or membrane structures p = 1 and A reduces to l/S which is the exact scale factor for 
stress and displacement constraints. 

SPECIALIZATION TO BENDING ELEMENTS 

In the following sections the e;,, A,, and A for bending elements subject to stress, displacement, and 
generalized stiffness constraints will be discussed. 

DISPLACEMENT CONSTRAINTS 

To find the e,, for displacement constraints the gradient of the constraint with respect to the design 
variable (aZ, / a A ; )  is required. There are several methods for finding these gradients (finite difference, 
direct differentiation, virtual load method), but for this work the virtual load method was incorporated. 
The virtual load method consists of expressing the active constraint Zj in terms of a virtual load vector l$ 
and the global displacements g. Thus, the displacement constraint 2, = u j  can be written as 

where F j  is the virtual load vector in which F, = 1 for i = j and Fj = 0 if i # j. The e;, can be found 
by first partitioning the element stiffness matrix K ;  into axial KA; and bending KB; components. Next, 
substitute the relation ct;AY' for I , ,  and note that a W / a A ,  = p i l i .  Then e,, for a displacement constraint 
becomes 

(38) 
! i ( K A a  + ni&Bi)? 

e . .  - 
Pil i  A i  83 - 

where f t .  is the virtual displacement vector corresponding to the virtual load vector f i  and is obtained from 
the relation 

- 3  

F j  = K! ,  (39) 

Once e ; j  is known the Lagrangian multiplier A, for t h e  j t h  active constraint can be found by using 
equation (23). The resulting A's are 

(40) 
W A .  = -- 

3 
z j ( p A j  + P S j )  

where the parameters p ~ j  and p ~ j  are 

For the scaling factor of equation (36) the parameter p can be broken up into axial and bending parts 
p~ j , p~ j . Therefore, 

= p A j  + p B j  (43) 
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and the scale factor for displacement constraints becomes 

l / P  which is the scale factor for membrane structures originally found by Venkayyain 1971[1]. By inspection 
of P A ,  and p ~ j  and recalling the limits on n, for bending elements, it follows that 

1s PAj + PBj 5 3 (45) 

STRESS CONSTRAINTS 

For bending elements the stress in the j t h  member is expressed in terms of its bending and axial 
components as; aj = U ~ A  + U,B.  The gradients of the stress constraints (dZj/aA,) are found by the adjoint 
variable method which is a generalization of the virtual load method. Tha t  is, the constraints are recast in 
terms of a virtual load vector Zj'S and the global displacement vector g. The stress in a given member was 
written by Venkayya (21 as 

~j = C,Qj ( 46) 

where the vector Tj is defined as 

where SGN is the sign on the entries of the element force vector Q .  and Sj is the section modulus defined 

as Sj = -y,AJ'. The element force matrix can be expressed in terms of the global displacements F, the local 
element stiffness kj , and a transformation matrix gj as 

- 3  

Q j  = k j a j F  (49) 

Now the stress a,  can be written in terms of a virtual load vector f j  and the global displacements as 

a j  = (50)  

where the virtual load vector [i 2 T i k j a j .  Unlike displacement constraints the derivative of the virtual load 
vector with respect t o  the design variable is not equal to zero (dZj ' f /aA,  # 0). This fact causes somewhat 
more complicated expressions for e ; j ,  X j  and A. For stress constraints e,j becomes 

where 6,j is the Kronecker delta and Tz. and s. are defined as 
- 3  

- 9, = ( k A j  + n j k 1 3 j ) g j u j  

Now, the Lagrangian multiplier for the j t h  constraint can be found as 

W 
xj = -- 

Zj(PAj + PBj - Pj) 

(53) 

(54) 
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where p A j , p ~ j  are the same as those for the displacement constraints. p j  is a new term introduced due to 
the fact that  a f i / a A ,  # 0 for stress constraints and it is found to be 

Finally, following the derivation of equation (36) the scale factor for bending elements subject to stress 
constraints can be found to be 

A =  p A j  + P B j  - P j  

GENERALIZED STIFFNESS CONSTRAINT 

If P is the generalized forces and u is the corresponding generalized displacements then the generalized 
stiffness constraint can be written as 

1 
2 

Z j ( A )  = -p,"u; i = 1,2, ... load cases 

The  e , , ,  p ~ j ,  p ~ j ,  and X j  can be found to be 

(57) 

It is worthwhile to note that the generalized stiffness constraint does not require the use of the virtual load 
and displacement vector. This is because the information needed for the gradient of the constraint is already 
available and no new computations are needed. 

MEETING THE CONDITIONS 
OF OPTIMALITY 

The conditions of optimality state that  the product between e; jX j  summed over all active constraints 
should be equal to unity at  the optimum design. The e,j are the ratios of the constraint gradients to objective 
gradients. These gradients are taken with respect to each active design variable A , .  A design variable is 
considered active if it  satisfies the following criteria: 

1. The variable is chosen to participate in the design iteration. 

2. The  variable is within the given allowable limits. 

3. The sensitivity of the j t h  active constrain with respect to the design variable A, is negative (d < 0). a z .  

It  is important t o  note that this third criteria is constraint dependent. 

If the design variable does not satisfy the above criteria it is considered passive and the conditions of 
optimality will not be satisfied for that particular design variable. Tha t  is C e ; j A j  may not be equal to 
unity at the optimum design. If the variable does not satisfy the first two criteria then the variable is simply 
eliminated from the design for that particular iteration. However, if the variable passes the first two criteria 
there is some question on how to handle the third criteria since it is constraint dependent. It is easy to 
see that A ,  may be passive for one constraint (d > 0) but active for another constraint (- < 0). 
This raises the question of how does one deal with the e; j  when a member is passive relative to a particular 
constraint? In this work if aZ,a /A;  > 0 then e;? for that  particular constraint and design variable was set 
to zero. 

az azj+i 
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MODIFYING THE RESIZING ALGORITHM 

When using the resizing algorithm equation (26) as it appears (that is taking the sum of all the e , j X j )  

it  was found that this tends to over constrain the problem. The converged optimum was well above the 
known optimum. This was particularly true for multiple loading conditions. Here, instead of using the 
entire sum for resizing the maximum value of e,,X, for the particular design variable was chosen. This can 
be interpreted as each variable being resized based on the constraint that  is most critical for that particular 
element. This method was found to work well and allowed the algorithm to  converge to the known optimum. 

REDUCING THE ERROR 
IN THE SCALE FACTORS 

Due to the Taylor Series and binomial approximations the scaling factors in equations (40,56) are only 
valid within certain limits. This is especially true when the structure is primarily in bending. This is because 
equations (40,56) do  not reduce to  the exact bending scale factor (l//3)1'n if axial contributions are ignored. 
I t  is desired that the limits on /3 extend indefinitely without allowing the error in the scale factor or the 
response to  exceed 5%. If this can be accomplished, then no additional detailed analyses are required to 
scale the design to the constraint surface. VenkayyaIJ] achieved this by writing an interaction formula in the 
non-dimensional parameter space p' .  Since the limits on p ~ j ,  p ~ j  and A are known this is easily accomplish. 
The p A j  and p ~ j  indicate what portion of each scale factor (Aoz;crl, Abcnding) must be used to generate the 
scale factor for the combined axial bending case. A linear interpolation was used and the error on the scale 
factor and response was found to be < 2% regardless of the p. The scale factor can be represented by a 
linear interaction formula as 

where p A j  , p ~ ,  are the non-dimensional parameters found in equations (41,42), and j i A j  = 1 and j i B j  = n. 
One could also fit a higher order polynomial between the two ranges of A to totally eliminate the error, but 
an error 5 2% is generally sufficient. If each element in the structure has a different n then equation (59) 
can be written as 

where now jiBj = fi and Ti = % with 
P B  j 

SAMPLE PROBLEMS AND RESULTS 

On the basis of the preceeding derivations, a computer program written in FORTRAN 77 was developed. 
The  frames used in these examples are steel structures with a specific weight of .283 Ib/cubic inch and a 
modulus of elasticity of 29ksi. The type of section used is I-sections and the values for a;, n;, 7, and u, 

are .2072, 3.0, .393, 2.0 respectively for all members. All problems were solved on a VAX 8600. For these 
problems the resizing was based on the generalized stiffness and displacement constraints where the scaling 
was done with respect to the stress and displacement constraints. 

The first example optimized is a ten-story symmetric frame show in figure 3 that was reported by Tabak 
and Wright(41. In this work the distributed loads used in reference 141 were replaced by concentrated load 
(figure 4),  thus creating new nodes at  the mid span of each floor. By doing this the thirty member plane 
frame reported in reference 141 became a forty member structure. This frame was optimized with stress 
constraints of 22ksi on each element and displacement constraints of two inches in the horizontal direction 
for all the nodes. Figure 5 shows that the math programming method converged [5],[6],[7] in seven iterations 
to a final weight of 35,051 pounds in 37.28 cpu seconds while the optimality criteria converged to 36,421 



pounds in four iterations with a cpu time of 4.33 seconds 181. The optimality criteria final weight is slightly 
higher (4%) but the cpu time is significantly less (over eight times less) than that of math programming. 

The  final example optimized is the 313 member frame in figure 6. This frame is subject to five loading 
conditions (figure 7), along with stress and displacement constraints. The displacement constraints are 4.0 
inches in the vertical and 12.0 in the horizontal direction at all nodes. The limit for the stresses in each 
element was 29 ksi. In figure 8 it can be seen that math programming converges to a final weight of 120,419 
pounds in fourteen iterations with a cpu time of 58 minutes. Where the optimality criteria converged to a 
final weight of 125,166 pounds in twenty-five iterations using approximately 8 minutes of cpu time. Again, 
the  optimality criteria converges to a slightly higher weight (4% higher). The optimality criteria took a 
significantly large number of iterations to converge compared to math programming. This poor convergence 
is partly due to constraint switching. Even with the large number of iterations the cpu time for the optimality 
criteria algorithm is much lower than tha t  for math programming. 

CONCLUSIONS 

The generalized optimality criteria presented in this paper can be applied to any structural optimization 
problem and related constraints provided tha t  the constraints and their respective gradients are available. 
The  math programming method finds a new design by adding and subtracting gradient information to the 
current design. On the other 
hand, in the optimality criteria a redesign is computed by multiplying (not adding) gradient information 
to the current design thus, sweeping the design space instead of performing a point search. The  optimality 
criteria is also fairly independent of the the number of design variables, thus allowing literally thousands 
of independent design variables. This is not the case with math programming where an upper limit on 
the  number of independent design variables is between three to four hundred. When this limit is exceeded 
computer time becomes excessive and convergence is uncertain. For these problems the math programming 
method although computationally heavy gave a smooth rate of convergence and overall very good results. 

Searching from point t o  point can be a very long and costly procedure. 

There are some disadvantages to using the optimality criteria which are evident in the sample problems. 
The  optimality criteria, with the current implementation, converges to a 2% to 4% higher weight than that 
found by the mathematical programming method. Also, for t h e  313 member frame the optimality criteria 
method took a very large number of iterations to converge to the optimum. This is very undesirable since 
detailed analyses for large problems can become extremely expensive. 
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Node 
1,s 
2, 
4,6,7,9,12 
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Load case 1 

-6Ooo. 
-24000. 
-12000. 
-12000. 
-12000. 
-12000. 
-48000. 
-48000. 

x-Load(lbs) y-Load( Ibs) Moment(inch - lbs) 

Load case 3 

-4500. 
-18000. 
-9000. 
-9000. 
-9ooo. 
-9ooo. 
-56000. 
-56OOO. 

x-Load (kips) y-Load( kips) Moment(inch - lbe) 

S180. 
6250. 
6080. 
5920. 
5740. 
5540. 
5300. 
5000. 
4610. 
4010. 

x-Load( kips) 

-5180. 
-6230. 
-6080. 
-5920. 
-5740. 
-5540. 
-5500. 
-5000. 
-4610. 
-4010. 

Load case 3 
y-Load( kips) 
-4500. 
-18000. 
-9ooo. 
-9oOo. 
-9000. 
-9000. 
-58000. 
-56000. 

Moment (inch - Ibs) 

Loading Information For 40 Member Frame 
Figure 4 
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40 ELEMENT STRUCTURE 
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Figure 6 
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Node 
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Load case 1 
%-Load( kips) y-Load( kips) 

-26. 
-50. 
-18. 
-20. 

Load case 2 
y-Load( kips) %-Load( kips) 

2.0 
4.0 
4.0 
4.0 

x-Load (kips) y-Load( kips) 
-2.0 
-4.0 
-4.0 
-4.0 
-4.0 

Load case 3 

Moment(inch - kip) 

Moment(inch * kip) 

Moment(inch kip) 

Load case 1 = Load caee 1 + Load case 2 

Load case 5 = Load case 1 + Load case 3 

Loading Information For 313 Member Frame 
Figure 7 

313 ELEMENT STRUCTURE 
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Figure 8 
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